If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10n^2+9n-40=0
a = 10; b = 9; c = -40;
Δ = b2-4ac
Δ = 92-4·10·(-40)
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-41}{2*10}=\frac{-50}{20} =-2+1/2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+41}{2*10}=\frac{32}{20} =1+3/5 $
| 6w+4w=10 | | 9w+6=7w+30 | | 3(1-2x)=6x+3 | | 3m+(-80=-23 | | 3x-10+9x=-4 | | 19y+7=180 | | -4x+19=0 | | H^2-3h-18=0 | | 3=-2v+v | | x^2-3x+31=5x+15 | | x/5+13=30 | | -2x-18=16x+2 | | -12x+18=x+7 | | 4x-382x+5+3x-3=0 | | 11(m-2)+3m=-7m+17 | | 3u+6u=-72 | | -4x-9=9x-17 | | 5x-45=95 | | X=1.10/y | | 18x-8x+17=67 | | M=3-1÷2m | | 2(2m-6)+(m-7)=16 | | (1−4m)(m^2−3m+8)=0 | | 3(x+4)=-189 | | -15x+7=-7x-12 | | X=1.10-y | | 6-7x=6x-9x+10 | | (1−4m)(m2−3m+8)=0 | | 10-9c-5c=-1-3c | | 3(x4)=-18 | | 6x-13=x-18 | | 12x=10=54-54-10x |